228 research outputs found

    Using biomarkers and early prophylactic treatment to prevent cardiotoxicity in cancer patients on chemotherapy

    Get PDF
    Cardiac toxicity induced by anticancer therapy is of considerable concern for, once it develops, it may compromise the clinical effectiveness of treatment independent of the oncologic prognosis. The main strategy to minimize cardiotoxicity is to detect high-risk patients and begin prophylactic treatment as early as possible. According to the current standard for monitoring cardiac function cardiotoxicity is usually detected only once a functional impairment has already occurred, thus precluding any chance of prevention. The measurement of cardio-specifi c biomarkers can be a valid diagnostic tool for the early identifi cation, assessment and monitoring of cardiotoxicity. The role of Troponin I in identifying patients with subclinicalcardiotoxicity and their subsequent treatment with angiotensin- converting enzyme inhibitors to prevent left ventricular ejection fraction (LVEF) reduction and cardiac events, is emerging as an effective strategy against these complications. When this approach is not feasible, a complete LVEFrecovery and a reduction in cardiac events may be achieved if left ventricular dysfunction (LVD) is detected early and the patient promptly treated with angiotensin-converting enzyme inhibitors, possibly in combination with beta-blocking agents

    CardiotossicitĂ  da agenti antitumorali

    Get PDF
    Chemotherapy-induced cardiotoxicity remains an unresolved problem strongly impacting the quality of life and the overall survival of cancer patients. The most typical form of cardiotoxicity, a dilated cardiomyopathy, usually becomes manifest late in the course of the disease and it is classically considered to be refractory to therapy. Detection of subclinical cardiac injury is crucial since it may facilitate early therapeutic measures. To detect cardiac damage, the most frequently adopted diagnostic approach is the monitoring of left ventricular ejection fraction by echocardiography or radionuclide-angiocardiography; however, these methods utilized in clinical practice have low sensitivity and poor predictive value. Hence, other strategies, including an early detection of cardiotoxicity by biomarkers, have been proposed. The role of troponin I in identifying patients at risk of cardiotoxicity, and of angiotensin-converting enzyme inhibitors in preventing left ventricular ejection fraction reduction and cardiac events, is clearly emerging as an effective approach for the prevention of this complications. When chemotherapy-induced cardiomyopathy develops, however, no definite guidelines are currently adopted, and, although it is likely that angiotensin-converting enzyme inhibitors and beta-blockers may be highly effective, there is still some unjustified concern about using them in cancer patients

    Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons

    Get PDF
    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions

    Cryopreservation protocol for human biliary tree stem/progenitors, hepatic and pancreatic precursors

    Get PDF
    Human biliary tree stem/progenitor cells (hBTSCs) are being used for cell therapies of patients with liver cirrhosis. A cryopreservation method was established to optimize sourcing of hBTSCs for these clinical programs and that comprises serum-free Kubota's Medium (KM) supplemented with 10% dimethyl sulfoxide (DMSO), 15% human serum albumin (HSA) and 0.1% hyaluronans. Cryopreserved versus freshly isolated hBTSCs were similar in vitro with respect to self-replication, stemness traits, and multipotency. They were able to differentiate to functional hepatocytes,cholangiocytes or pancreatic islets, yielding similar levels of secretion of albumin or of glucose-inducible levels of insulin. Cryopreserved versus freshly isolated hBTSCs were equally able to engraft into immunocompromised mice yielding cells with human-specific gene expression and human albumin levels in murine serum that were higher for cryopreserved than for freshly isolated hBTSCs. The successful cryopreservation of hBTSCs facilitates establishment of hBTSCs cell banking offering logistical advantages for clinical programs for treatment of liver diseases

    Cardiovascular toxicity from therapies for light chain amyloidosis

    Get PDF
    : Amyloid light-chain (AL) amyloidosis is a hematological disorder characterized by abnormal proliferation of a plasma cell clone producing monoclonal free light chains that misfold and aggregate into insoluble fibrils in various tissues. Cardiac involvement is a common feature leading to restrictive cardiomyopathy and poor prognosis. Current first-line treatments aim at achieving hematological response by targeting the plasma cell clones, and these have been adapted from multiple myeloma therapy. Patients with AL amyloidosis often exhibit multiorgan involvement, making them susceptible to cancer therapy-related cardiovascular toxicity. Managing AL amyloidosis is a complex issue that requires enhanced knowledge of the cardio-oncological implications of hematological treatments. Future research should focus on implementing and validating primary and secondary prevention strategies and understanding the biochemical basis of oncological therapy-related damage to mitigate cardiovascular toxicity

    A new tool for touch-free patient registration for robot-assisted intracranial surgery: Application accuracy from a phantom study and a retrospective surgical series

    Get PDF
    OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frameregistration- based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices

    Prokineticin Receptor-1 Signaling Inhibits Dose- and Time-Dependent Anthracycline-Induced Cardiovascular Toxicity Via Myocardial and Vascular Protection

    Get PDF
    Abstract Background High prevalence of heart failure during and following cancer treatments remains a subject of intense research and therapeutic interest. Objectives This study investigated how different concentrations of doxorubicin (DOX) can affect the function of the cardiac cells. This study also examined whether activation of prokineticin receptor-1 (PKR1) by a nonpeptide agonist, IS20, prevents DOX-induced cardiovascular toxicity in mouse models. Methods We used cultured cardiomyocytes, endothelial cells (ECs), and epicardium-derived progenitor cells (EPDCs) for in vitro, assays and tumor-bearing and acute and chronic toxicity mouse models for in vivo assays. Results Brief exposure to cardiomyocytes with high-dose DOX increases the accumulation of reactive oxygen species (ROS) by inhibiting a detoxification mechanism via stabilization of cytoplasmic NRF2. Prolonged exposure to medium-dose DOX induces apoptosis in cardiomyocytes, ECs, and EPDCs. However, low-dose DOX promotes functional defects without inducing apoptosis in EPDCs and ECs. IS20 alleviates detrimental effects of DOX in cardiac cells via activating AKT or mitogen-activated protein kinase pathways. Genetic or pharmacological inactivation of PKR1 subdues these effects of IS20. In a chronic mouse model of DOX cardiotoxicity, IS20 normalizes an elevated serum marker of cardiotoxicity and vascular and EPDC deficits, attenuates apoptosis and fibrosis, and improves the survival rate and cardiac function. IS20 does not interfere with the cytotoxicity or antitumor effects of DOX in breast cancer lines or in a mouse model of breast cancer but attenuates the decreases in LV diastolic volume induced by acute DOX treatment. Conclusions This study identifies the molecular and cellular signature of dose-dependent DOX-mediated cardiotoxicity and provides evidence that PKR1 is a promising target to combat cardiotoxicity of cancer treatments

    Towards the reconstitution of a two-enzyme cascade for resveratrol synthesis on potyvirus particles

    Get PDF
    The highly ordered protein backbone of virus particles makes them attractive candidates for use as enzyme nano-carriers (ENCs). We have previously developed a non-covalent and versatile approach for adhesion of enzymes to virus particles. This approach makes use of z33, a peptide derived from the B-domain of Staphylococcus aureus protein A, which binds to the Fc domain of many immunoglobulins. We have demonstrated that with specific antibodies addressed against the viral capsid proteins (CPs) an 87% coverage of z33-tagged proteins can be achieved on potyvirus particles. 4-coumarate coenzyme A ligase (4CL2) and stilbene synthase (STS) catalyze consecutive steps in the resveratrol synthetic pathway. In this study, these enzymes were modified to carry an N-terminal z33 peptide and a C-terminal 6xHis tag to obtain z4CL2His and zSTSHis, respectively. A protein chimera, z4CL2::STSHis, with the same modifications was also generated from the genetic fusion of both mono-enzyme encoding genes. All z33 enzymes were biologically active after expression in Escherichia coli as revealed by LC-MS analysis to identify resveratrol and assembled readily into macromolecular complexes with Potato virus A particles and α-PVA CP antibodies. To test simultaneous immobilization-purification, we applied the double antibody sandwich – ELISA protocol to capture active z33-containg mono-enzymes and protein chimera directly from clarified soluble cell lysates onto the virus particle surface. These immobilized enzymes were able to synthesize resveratrol. We present here a bottom up approach to immobilize active enzymes onto virus-based ENCs and discuss the potential to utilize this method in the purification and configuration of nano-devices.Peer reviewe

    The cancer patient and cardiology

    Get PDF
    Advances in cancer treatments have improved clinical outcomes, leading to an increasing population of cancer survivors. However, this success is associated with high rates of short- and long-term cardiovascular (CV) toxicities. The number and variety of cancer drugs and CV toxicity types make long-term care a complex undertaking. This requires a multidisciplinary approach that includes expertise in oncology, cardiology and other related specialties, and has led to the development of the cardio-oncology subspecialty. This paper aims to provide an overview of the main adverse events, risk assessment and risk mitigation strategies, early diagnosis, medical and complementary strategies for prevention and management, and long-term follow-up strategies for patients at risk of cancer therapy-related cardiotoxicities. Research to better define strategies for early identification, follow-up and management is highly necessary. Although the academic cardio-oncology community may be the best vehicle to foster awareness and research in this field, additional stakeholders (industry, government agencies and patient organizations) must be involved to facilitate cross-discipline interactions and help in the design and funding of cardio-oncology trials. The overarching goals of cardio-oncology are to assist clinicians in providing optimal care for patients with cancer and cancer survivors, to provide insight into future areas of research and to search for collaborations with industry, funding bodies and patient advocates. However, many unmet needs remain. This document is the product of brainstorming presentations and active discussions held at the Cardiovascular Round Table workshop organized in January 2020 by the European Society of Cardiology.</p

    Report on the International Colloquium on Cardio-Oncology (Rome, 12–14 March 2014)

    Get PDF
    Cardio-oncology is a relatively new discipline that focuses on the cardiovascular sequelae of anti-tumour drugs. As any other young adolescent discipline, cardio-oncology struggles to define its scientific boundaries and to identify best standards of care for cancer patients or survivors at risk of cardiovascular events. The International Colloquium on Cardio-Oncology was held in Rome, Italy, 12–14 March 2014, with the aim of illuminating controversial issues and unmet needs in modern cardio-oncology. This colloquium embraced contributions from different kind of disciplines (oncology and cardiology but also paediatrics, geriatrics, genetics, and translational research); in fact, cardio-oncology goes way beyond the merging of cardiology with oncology. Moreover, the colloquium programme did not review cardiovascular toxicity from one drug or the other, rather it looked at patients as we see them in their fight against cancer and eventually returning to everyday life. This represents the melting pot in which anti-cancer therapies, genetic backgrounds, and risk factors conspire in producing cardiovascular sequelae, and this calls for screening programmes and well-designed platforms of collaboration between one key professional figure and another. The International Colloquium on Cardio-Oncology was promoted by the Menarini International Foundation and co-chaired by Giorgio Minotti (Rome), Joseph R Carver (Philadelphia, Pennsylvania, United States), and Steven E Lipshultz (Detroit, Michigan, United States). The programme was split into five sessions of broad investigational and clinical relevance (what is cardiotoxicity?, cardiotoxicity in children, adolescents, and young adults, cardiotoxicity in adults, cardiotoxicity in special populations, and the future of cardio-oncology). Here, the colloquium chairs and all the session chairs briefly summarised what was said at the colloquium. Topics and controversies were reported on behalf of all members of the working group of the International Colloquium on Cardio-Oncology
    • 

    corecore